SME 3033 FINITE ELEMENT METHOD

Two-Dimensional Problems Using CST Elements

(Initial notes are designed by Dr. Nazri Kamsah)

SME 3033 FINITE ELEMENT METHOD

8-1 Introduction

A thin plate of thickness t, with a hole in the middle, is subjected to a uniform traction load, T as shown. This 3-D plate can be analyzed as a two-dimensional problem.

2-D problems generally fall into two categories: plane stress and plane strain.

a) Plane Stress

A plane stress problem

The thin plate can be analyzed as a plane stress problem, where the normal and shear stresses perpendicular to the x - y plane are assumed to be zero, i.e.

$$
\sigma_{z}=0 ; \tau_{x z}=0 ; \tau_{y z}=0
$$

The nonzero stress components are

$$
\sigma_{x} \neq 0 ; \sigma_{y} \neq 0 ; \tau_{x y} \neq 0
$$

SME 3033 FINITE ELEMENT METHOD

b) Plane Strain

A dam subjected to uniform pressure and a pipe under a uniform internal pressure can be analyzed in twodimension as plain strain problems.
The strain components perpendicular to the x - y plane are assumed to be zero, i.e.

$$
\varepsilon_{z}=0 ; \gamma_{x z}=0 ; \gamma_{y z}=0
$$

Thus, the nonzero strain components are $\varepsilon_{x}, \varepsilon_{y}$, and $\gamma_{x y}$

$$
\varepsilon_{x} \neq 0 ; \varepsilon_{y} \neq 0 ; \gamma_{x y} \neq 0
$$

SME 3033 FINITE ELEMENT METHOD

8-2 General Loading Condition

A two-dimensional body can be subjected to three types of forces:
a) Concentrated forces, $P_{x} \& P_{y}$ at a point, i;
b) Body forces, $f_{b, x} \& f_{b, y}$ acting at its centroid;
c) Traction force, T (i.e. force per unit length), acting along a perimeter.

SME 3033 FINITE ELEMENT METHOD

The 2-dimensional body experiences a deformation due to the applied loads.

At any point in the body, there are two components of displacement, i.e.
$u=$ displacement in x-direction;
$\nu=$ displacement in y-direction.

SME 3033 FINITE ELEMENT METHOD

Stress-Strain Relation

Recall, at any point in the body, there are three components of strains, i.e.

$$
\{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{array}\right\}
$$

The corresponding stress components at that point are

$$
\{\sigma\}=\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}
$$

SME 3033 FINITE ELEMENT METHOD

The stresses and strains are related through,

$$
\{\sigma\}=[D]\{\varepsilon\}
$$

where $[D]$ is called the material matrix, given by

$$
[D]=\frac{E}{1-v^{2}} \cdot\left\{\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right\}
$$

for plane stress problems and

$$
[D]=\frac{E}{(1+v)(1-2 v)} \cdot\left\{\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & \frac{1}{2}-v
\end{array}\right\}
$$

for plane strain problems.

SME 3033 FINITE ELEMENT METHOD

8-3 Finite Element Modeling

The two-dimensional body is transformed into finite element model by subdividing it using triangular elements.

Note:

1. Unfilled region exists for curved boundaries, affecting accuracy of the solution. The accuracy can be improved by using smaller elements.
2. There are two displacement components at a node. Thus, at a node j, the displacements are:
$\begin{array}{ll}Q_{2 j-1} & \text { in } x \text {-direction } \\ Q_{2 j} & \text { in } y \text {-direction }\end{array}$

SME 3033 FINITE ELEMENT METHOD

Finite element model of a bracket.

SME 3033 FINITE ELEMENT METHOD

8-4 Constant-Strain Triangle (CST)

Consider a single triangular element as shown.
The local node numbers are assigned in the counterclockwise order.

The local nodal displacement vector for a single element is given by,

$$
\{q\}=\left[\begin{array}{llll}
q_{1}, & q_{2}, & \ldots, & q_{6}
\end{array}\right]^{T}
$$

Within the element, displacement at any point of coordinate (x, y), is represented by two components, i.e. u in the x direction and v in the y-direction.

Note: We need to express u and v in terms of the nodal displacement components, i.e. $q_{1}, q_{2}, \ldots, q_{6}$.

SME 3033 FINITE ELEMENT METHOD

8-5 Displacement Functions

Displacement components u and v at any point (x, y) within the element are related to the nodal displacement components through

$$
\begin{align*}
& u=N_{1} q_{1}+N_{2} q_{3}+N_{3} q_{5} \\
& v=N_{1} q_{2}+N_{2} q_{4}+N_{3} q_{6} \tag{i}
\end{align*}
$$

where N_{1}, N_{2} and N_{3} are the linear shape functions, given by

$$
\begin{equation*}
N_{1}=\xi ; \quad N_{2}=\eta ; \quad N_{3}=1-\xi-\eta \tag{ii}
\end{equation*}
$$

in which ξ and η are the natural coordinates for the triangular element.
Substituting Eq.(ii) into Eq.(i) and simplifying, we obtain alternative expressions for the displacement functions, i.e.

$$
\begin{align*}
& u=\left(q_{1}-q_{5}\right) \xi+\left(q_{3}-q_{5}\right) \eta+q_{5} \tag{iii}\\
& v=\left(q_{2}-q_{6}\right) \xi+\left(q_{4}-q_{6}\right) \eta+q_{6}
\end{align*}
$$

SME 3033 FINITE ELEMENT METHOD

Eq.(i) can be written in a matrix form as,
where

$$
\begin{aligned}
& \{u\}=[N]\{q\} \\
& {[N]=\left[\begin{array}{cccccc}
N_{1} & 0 & N_{2} & 0 & N_{3} & 0 \\
0 & N_{1} & 0 & N_{2} & 0 & N_{3}
\end{array}\right]} \\
& \{q\}=\left[\begin{array}{llll}
q_{1}, & q_{2}, & \ldots, & q_{6}
\end{array}\right]^{T}
\end{aligned}
$$

For the triangular element, the coordinates (x, y) of any point within the element can be expressed in terms of the nodal coordinates, using the same shape functions N_{l}, N_{2} and N_{3}. We have,

$$
\begin{aligned}
& x=N_{1} x_{1}+N_{2} x_{2}+N_{3} x_{3} \\
& y=N_{1} y_{1}+N_{2} y_{2}+N_{3} y_{3}
\end{aligned}
$$

This is called an isoparametric representation.

SME 3033 FINITE ELEMENT METHOD

Substituting for N_{i} using eq. (ii), we get

$$
\begin{aligned}
& x=\left(x_{1}-x_{3}\right) \xi+\left(x_{2}-x_{3}\right) \eta+x_{3} \\
& y=\left(y_{1}-y_{3}\right) \xi+\left(y_{2}-y_{3}\right) \eta+y_{3}
\end{aligned}
$$

Using the notation, $x_{i j}=x_{i}-x_{j}$ and $y_{i j}=y_{i}-y_{j}$, the above equations can then be written as

$$
\begin{aligned}
& x=x_{13} \xi+x_{23} \eta+x_{3} \\
& y=y_{13} \xi+y_{23} \eta+y_{3}
\end{aligned}
$$

Note: The above equations relate the x - and y-coordinates to the ξ - and η coordinates (the natural coordinates). We observe that,

$$
\begin{aligned}
& x_{13}=x_{1}-x_{3} \\
& y_{23}=y_{2}-y_{3}
\end{aligned}
$$

SME 3033 FINITE ELEMENT METHOD

8-6 The Shape Functions

(c)

The shape functions for the triangular element are illustrated in the figures. Recall, we have

$$
\begin{aligned}
& N_{1}=\xi ; \quad N_{2}=\eta ; \\
& N_{3}=1-\xi-\eta
\end{aligned}
$$

Also, $\quad N_{1}+N_{2}+N_{3}=1$

SME 3033 FINITE ELEMENT METHOD

Area Coordinate Representation

The shape functions can be physically represented by area coordinates,

$$
\begin{aligned}
& N_{1}=\frac{A_{1}}{A} ; \\
& N_{2}=\frac{A_{2}}{A} ; \\
& N_{3}=\frac{A_{3}}{A}
\end{aligned}
$$

where A is the area of the triangular element, i.e.

$$
A=A_{1}+A_{2}+A_{3}
$$

SME 3033 FINITE ELEMENT METHOD

Exercise 8-1

Consider a triangular element shown below. Evaluate the shape functions N_{1}, N_{2}, and N_{3} at an interior point P.

The triangular element for solution.

SME 3033 FINITE ELEMENT METHOD

Solution

$$
\begin{aligned}
& x=N_{1} x_{1}+N_{2} x_{2}+N_{3} x_{3}=1.5 N_{1}+7 N_{2}+4 N_{3}=3.85 \\
& y=N_{1} y_{1}+N_{2} y_{2}+N_{3} y_{3}=2 N_{1}+3.5 N_{2}+7 N_{3}=4.8
\end{aligned}
$$

Using the notation, $x_{i j}=x_{i}-x_{j}$ and $y_{i j}=y_{i}-y_{j}$, the above become

$$
\begin{aligned}
& x=\left(x_{1}-x_{3}\right) \xi+\left(x_{2}-x_{3}\right) \eta+x_{3}=-2.5 \xi+3 \eta+4=3.85 \\
& y=\left(y_{1}-y_{3}\right) \xi+\left(y_{2}-y_{3}\right) \eta+y_{3}=-5 \xi-3.5 \eta+7=4.8
\end{aligned}
$$

Simplifying the equations yields,

$$
\begin{aligned}
& 2.5 \xi-3 \eta=0.15 \\
& 5 \xi+3.5 \eta=2.2
\end{aligned}
$$

Solving the equations simultaneously, we obtain $\xi=0.3$ and $h=0.2$. Thus, the shape functions for the triangular element are,

$$
N_{1}=0.3 \quad N_{2}=0.2 \quad N_{3}=0.5
$$

SME 3033 FINITE ELEMENT METHOD

8-7 Area of the Triangular Element

The area, A of any arbitrarily oriented straight-sided triangular elements can be determined using a formula

$$
A=\frac{1}{2}|\operatorname{det}[J]|
$$

where $[J]$ is a square matrix called the Jacobian, given by

$$
[J]=\left[\begin{array}{ll}
x_{13} & y_{13} \\
x_{23} & y_{23}
\end{array}\right]
$$

The determinant of the Jacobian $[J]$ is

$$
\operatorname{det}[J]=x_{13} y_{23}-x_{23} y_{13}
$$

Note: "II" represents the "magnitude of". Most computer software use counterclockwise order of local node numbering, and use $\operatorname{det}[J]$ for computing the area of the triangular element.

SME 3033 FINITE ELEMENT METHOD

8-8 Strain-Displacement Matrix

The strains within the triangular element are related to the components of the nodal displacement by a relation

$$
\{\varepsilon\}=[B]\{q\}
$$

where $[B]$ is a (3×6) rectangular matrix called the strain-displacement matrix, given by

$$
[B]=\frac{1}{\operatorname{det}[J]}\left[\begin{array}{cccccc}
y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\
0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\
x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12}
\end{array}\right]
$$

Note: For the given magnitude of $\{q\}$, the strains within the element depend only on [B] matrix, which in turns depends on the nodal coordinates, which are constant.
Hence the strains are the same everywhere within the element, thus the name constant-strain triangle (CST).

SME 3033 FINITE ELEMENT METHOD

Exercise 8-2

Consider a triangular element in Exercise 8-1. a) Write the Jacobian matrix; b) Find the determinant of the Jacobian matrix; c) Compute the area of the triangular element; d) Establish the strain-displacement matrix for the element.

The triangular element for solution.

SME 3033 FINITE ELEMENT METHOD

7-9 Potential Energy Approach

The total potential energy of a 2-D body, discretized using triangular elements, is given by

$$
\begin{aligned}
\Pi=\sum_{e} & \frac{1}{2} \int_{e}\{\varepsilon\}^{T}[D]\{\varepsilon\} t d A \\
& \quad-\sum_{e} \int_{e}\{u\}^{T}\{f\} t d A-\int_{L}\{u\}^{T}\{T\} t d L \\
& \quad-\sum_{i}\{u\}_{i}^{T}\{P\}_{i}
\end{aligned}
$$

The first term represents the sum of internal strain energy of all elements, U_{e}. For a single element, the
 internal strain energy is

$$
U_{e}=\frac{1}{2} \int_{e}\{\varepsilon\}^{T}[D]\{\varepsilon\} t \cdot d A
$$

SME 3033 FINITE ELEMENT METHOD

We will derive the stiffness matrix of a triangular element using the potential energy approach. Recall, the internal strain energy of an element, U_{e} is given by

$$
\begin{equation*}
U_{e}=\frac{1}{2} \int_{e}\{\varepsilon\}^{T}[D]\{\varepsilon\} t \cdot d A \tag{i}
\end{equation*}
$$

The strains $\{\varepsilon\}$ are related to nodal displacements $\{q\}$ by,

$$
\begin{equation*}
\{\varepsilon\}=[B]\{q\} \tag{ii}
\end{equation*}
$$

Substituting Eq.(ii) into Eq.(i), we get

$$
\begin{equation*}
U_{e}=\frac{1}{2} \int_{e}\{q\}^{T}[B]^{T}[D][B]\{q\} t \cdot d A \tag{iii}
\end{equation*}
$$

Taking all constants in Eq.(iii) out of the integral we obtain,

$$
\begin{equation*}
U_{e}=\frac{1}{2}\{q\}^{T}[B]^{T}[D][B] t\left(\int_{e} d A\right)\{q\} \tag{iv}
\end{equation*}
$$

SME 3033 FINITE ELEMENT METHOD

Note that, $\int_{e} d A=A_{e}$, i.e. the area of the triangular element.
Substituting this into eq.(iv) and further simplifying, we get,

$$
\begin{equation*}
U_{e}=\frac{1}{2}\{q\}^{T} t_{e} A_{e}[B]^{T}[D][B]\{q\} \tag{v}
\end{equation*}
$$

The internal strain energy of the element can now be written as

$$
\begin{equation*}
U_{e}=\frac{1}{2}\{q\}^{T}[k]^{e}\{q\} \tag{vi}
\end{equation*}
$$

From eq.(vi) we identify the stiffness matrix $[k]^{e}$ of the triangular (CST) element as,

$$
[k]^{e}=t_{e} A_{e}[B]^{T}[D] \cdot[B]
$$

Note: Since there are 6 DOFs for a given element, $[k]^{e}$ will be a (6×6) rectangular symmetric matrix.

SME 3033 FINITE ELEMENT METHOD

Exercise 8-3

Determine the stiffness matrix for the straight-sided triangular element of thickness $t=1 \mathrm{~mm}$, as shown. Use $E=70 \mathrm{GPa}, v=0.3$ and assume a plane stress condition.

Solution

Element stiffness matrix is given by

$$
\begin{equation*}
[k]^{e}=t_{e} A_{e}[B]^{T}[D] \cdot[B] \tag{i}
\end{equation*}
$$

where,

$$
\begin{aligned}
t_{e} & =1 \mathrm{~mm} \\
A_{e} & =\frac{1}{2}|\operatorname{det}[J]|=\frac{1}{2}\left|x_{13} y_{23}-x_{23} y_{13}\right| \\
& =\frac{1}{2}|23.75| \\
A_{e} & =11.875 \mathrm{~mm}^{2}
\end{aligned}
$$

(Dimension is in mm)

SME 3033 FINITE ELEMENT METHOD

The strain-displacement matrix, $[B]$ is given by

$$
\left.\begin{array}{l}
{[B]=\frac{1}{\operatorname{det}[J]}\left[\begin{array}{cccccc}
y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\
0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\
x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12}
\end{array}\right]} \\
\\
=\frac{1}{23.75}\left[\begin{array}{cccccc}
3.5-7 & 0 & 7-2 & 0 & 2-3.5 & 0 \\
0 & 4-7 & 0 & 1.5-4 & 0 & 7-1.5 \\
4-7 & 3.5-7 & 1.5-4 & 7-2 & 7-1.5 & 2-3.5
\end{array}\right] \\
{[B]}
\end{array}\right]=\frac{1}{23.75}\left[\begin{array}{cccccc}
-3.5 & 0 & 5 & 0 & -1.5 & 0 \\
0 & -3 & 0 & -2.5 & 0 & 5.5 \\
-3 & -3.5 & -2.5 & 5 & -5.5 & -1.5
\end{array}\right] \$
$$

SME 3033 FINITE ELEMENT METHOD

The transpose of $[B]$ matrix is,

$$
[B]^{T}=\frac{1}{23.75}\left[\begin{array}{ccc}
-3.5 & 0 & -3 \\
0 & -3 & -3.5 \\
5 & 0 & -2.5 \\
0 & -2.5 & 5 \\
-1.5 & 0 & 5.5 \\
0 & 5.5 & -1.5
\end{array}\right]
$$

For a plane stress condition, the material's matrix $[D]$ is given by

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1}{2}(1-v)
\end{array}\right]=\frac{70 \times 10^{3}}{1-0.3^{2}}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & \frac{1}{2}(1-0.3)
\end{array}\right]
$$

SME 3033 FINITE ELEMENT METHOD

Substituting all the terms into eq.(i) we have,

$$
\begin{aligned}
& {[k]^{e}=1 \times 11.875 \times \frac{1}{23.75}\left[\begin{array}{ccc}
-3.5 & 0 & -3 \\
0 & -3 & -3.5 \\
5 & 0 & -2.5 \\
0 & -2.5 & 5 \\
-1.5 & 0 & 5.5 \\
0 & 5.5 & -1.5
\end{array}\right] \times \times \frac{70 \times 10^{3}}{\left(1-0.3^{2}\right)}\left[\begin{array}{cccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right] } \\
& \times \frac{1}{23.75}\left[\begin{array}{cccccc}
-3.5 & 0 & 5 & 0 & -1.5 & 0 \\
0 & -3 & 0 & -2.5 & 0 & 5.5 \\
-3 & -3.5 & -2.5 & 5 & -5.5 & -1.5
\end{array}\right]
\end{aligned}
$$

SME 3033 FINITE ELEMENT METHOD

Multiplying and simplifying, we obtain

$$
[k]^{e}=10^{4} \cdot\left[\begin{array}{cccccc}
q_{1} & q_{2} & q_{3} & q_{4} & q_{5} & q_{6} \\
2.494 & 1.105 & -2.409 & -0.425 & -0.085 & -0.68 \\
& 2.152 & -0.233 & 0.223 & -0.873 & -2.374 \\
& & 4.403 & -1.316 & -1.994 & 1.549 \\
& & & 2.429 & 1.741 & -2.652 \\
\text { symmetry } & & & 2.079 & -0.868 \\
& & & & 5.026
\end{array}\right]
$$

Note: Connectivity with the local DOFs is shown.

SME 3033 FINITE ELEMENT METHOD

8-11 Element Force Vector

We will derive the force vector for a single element, which is contributed by a) body force, f and b) traction force, T.

We need to convert both f and T into the equivalent nodal forces.
Note: The concentrated forces can be included directly into the global load vector, appropriate DOF direction.
a) Body Force

Suppose body force components, f_{x} and f_{y}, act at the centroid of a triangular element.

The potential energy due to these forces is given by,

$$
\begin{equation*}
\int_{e}\{u\}^{T}\{f\} t \cdot d A=t_{e} \int_{e}\left(u f_{x}+v f_{y}\right) d A \tag{i}
\end{equation*}
$$

SME 3033 FINITE ELEMENT METHOD

Recall,

$$
\begin{aligned}
& u=N_{1} q_{1}+N_{2} q_{3}+N_{3} q_{5} \\
& v=N_{1} q_{2}+N_{2} q_{4}+N_{3} q_{6}
\end{aligned}
$$

$$
\int_{e} N_{i} d A=\frac{1}{3} A_{e}
$$

Substituting the above into eq.(i), we get

$$
\int_{e}\{u\}^{T}\{f\} t \cdot d A=\{q\}^{T}\{f\}^{e}
$$

where $\{f\}^{\mathrm{e}}$ is the element body force vector, given by

$$
\{f\}^{\prime}=\frac{t t_{A},}{3}\left[f_{x}, f_{y}, f_{x}, f_{v}, f_{x}, f_{y}\right]^{T}
$$

Note: Physical representation of force vector $\{f\}$ is shown.

SME 3033 FINITE ELEMENT METHOD

8-12 Concentrated Force

The concentrated force term can be easily considered by having a node at the point of application of the force.

If concentrated load components P_{x} and P_{y} are applied at a point i, then

$$
\{u\}_{i}^{T}\{P\}_{i}=Q_{2 i-1} P_{x}+Q_{2 i} P_{y}
$$

Thus, P_{x} and P_{y}, i.e. the x and y components of $\{P\}_{i}$ get added to the $\left(2_{i}-1\right)$ th component and $\left(2_{i}\right)$ th components of the global force vector, $\{F\}$.

Note: The contribution of the body, traction and concentrated forces to the global force vector, $\{F\}$ is represented by,

$$
\{F\} \leftarrow \sum_{e}\left(\{f\}^{e}+\{T\}^{e}\right)+\{P\}
$$

SME 3033 FINITE ELEMENT METHOD

8-13 Strains and Stress Calculations

a) Strains

The strains in a triangular element are,

$$
\begin{aligned}
& \{\varepsilon\}^{e}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{d u}{d x} \\
\frac{d v}{d y} \\
\left(\frac{d u}{d y}+\frac{d v}{d x}\right)
\end{array}\right\} \\
& \{\varepsilon\}^{e}=[B]\{q\}
\end{aligned}
$$

Note: We observed that $\{\varepsilon\}^{\mathrm{e}}$ depends on the $[B]$ matrix, which in turn depends only on nodal coordinates $\left(x_{i}, y_{i}\right)$, which are constant. Therefore, for a given nodal displacements $\{q\}$, the strains $\{\varepsilon\}^{e}$ within the element are constant.
Hence the triangular element is called a constant-strain triangle.

SME 3033 FINITE ELEMENT METHOD

b) Stresses

The stresses in a triangular element can be determined using the stress-strain relation,

$$
\{\sigma\}^{e}=\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=[D]\{\varepsilon\}^{e}=[D][B]\{q\}^{e}
$$

Note:

1. Since the strains $\{\varepsilon\}^{e}$ are constant within the element, the stresses are also the same at any point in the element.
2. Stresses for plane stress problem differ from those for plane strain problem by the material's matrix $[D]$.
3. For interpolation purposes, the calculated stresses may be used as the values at the centroid of the element.
4. Principal stresses and their directions are calculated using the Mohr circle.

SME 3033 FINITE ELEMENT METHOD

Example 8-1

Consider a thin plate having thickness $t=0.5$ in. being modeled using two CST elements, as shown. Assuming plane stress condition, (a) determine the displacements of nodes 1 and 2 , and (b) estimate the stresses in both elements.

Thickness $t=0.5$ inı, $E=30 \times 10^{6} \mathrm{psi}, v=0.25$

SME 3033 FINITE ELEMENT METHOD

Solution
Element connectivity

Local Nodes

Element No	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
1	1	2	4
2	3	4	2

For plane stress problem, the materials matrix is given by

$$
\begin{aligned}
& {[D]=\frac{E}{1-v^{2}}\left[\begin{array}{llc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1}{2}(1-v)
\end{array}\right]} \\
& {[D]=32 \times 10^{6}\left[\begin{array}{ccc}
1 & 0.25 & 0 \\
0.25 & 1 & 0 \\
0 & 0 & 0.375
\end{array}\right]}
\end{aligned}
$$

Thickness $t=0.5 \mathrm{in}, E=30 \times 10^{6} \mathrm{psi}, v=0.25$

SME 3033 FINITE ELEMENT METHOD

Element 1

Area of element, $\quad A_{1}=\frac{1}{2}|\operatorname{det}[J]|=\frac{1}{2}(6)=3 \mathrm{in}^{2}$
The strain-displacement matrix,
$[B]=\frac{1}{\operatorname{det}[J]}\left[\begin{array}{cccccc}y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\ 0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\ x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12}\end{array}\right]=\frac{1}{6}\left[\begin{array}{cccccc}2 & 0 & -3 & 0 & -2 & 0 \\ 0 & -3 & 0 & 3 & 0 & 0 \\ -3 & 2 & 3 & 0 & 0 & -2\end{array}\right]$

Multiplying matrices $[D][B]$ we get,

$$
[D][B]^{(1)}=10^{7} \cdot\left[\begin{array}{cccccc}
1.067 & -0.4 & 0 & 0.4 & -1.067 & 0 \\
0.267 & -1.6 & 0 & 1.6 & -0.267 & 0 \\
-0.6 & 0.4 & 0.6 & 0 & 0 & -0.4
\end{array}\right]
$$

SME 3033 FINITE ELEMENT METHOD

The stiffness matrix is given by,

$$
[k]^{(1)}=t_{1} A_{1}[B]_{1}^{T}[D][B]_{1}
$$

Substitute all parameters and multiplying the matrices, yields

$$
[k]^{(1)}=10^{7}\left[\begin{array}{cccccc}
Q_{1} & Q_{2} & Q_{3} & Q_{4} & Q_{7} & Q_{8} \\
0.983 & -0.5 & -0.45 & 0.2 & -0.533 & 0.3 \\
& 1.4 & 0.3 & -1.2 & 0.2 & -0.2 \\
& & 0.45 & 0 & 0 & -0.3 \\
& & & 1.2 & -0.2 & 0 \\
& \text { symmetric } & & & 0.533 & 0 \\
& & & & & 0.2
\end{array}\right]
$$

Note: Connectivity with global DOFs are shown.

SME 3033 FINITE ELEMENT METHOD

Element 2

Area of element, $\quad A_{2}=\frac{1}{2}|\operatorname{det}[J]|=\frac{1}{2}(6)=3$ in 2

The strain-displacement matrix is

$$
[B]=\frac{1}{\operatorname{det}[J]}\left[\begin{array}{cccccc}
y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\
0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\
x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cccccc}
-2 & 0 & 0 & 0 & 2 & 0 \\
0 & 3 & 0 & -3 & 0 & 0 \\
3 & -2 & -3 & 0 & 0 & 2
\end{array}\right]
$$

Multiplying matrices $[D][B]$ we get,

$$
[D][B]^{(2)}=10^{7} \cdot\left[\begin{array}{cccccc}
-1.067 & 0.4 & 0 & -0.4 & 1.067 & 0 \\
-0.267 & 1.6 & 0 & -1.6 & 0.267 & 0 \\
0.6 & -0.4 & -0.6 & 0 & 0 & 0.4
\end{array}\right]
$$

SME 3033 FINITE ELEMENT METHOD

The stiffness matrix is given by,

$$
[k]^{(2)}=t_{2} A_{2}[B]_{2}^{T}[D][B]_{2}
$$

Substituting all parameters and multiplying the matrices yield
$[k]^{(2)}=10^{7}\left[\begin{array}{cccccc}Q_{5} & Q_{6} & Q_{7} & Q_{8} & Q_{3} & Q_{4} \\ 0.983 & -0.5 & -0.45 & 0.2 & -0.533 & 0.3 \\ & 1.4 & 0.3 & -1.2 & 0.2 & -0.2 \\ & & 0.45 & 0 & 0 & -0.3 \\ & & & 1.2 & -0.2 & 0 \\ & \text { symmetric } & & & 0.533 & 0 \\ & & & & & 0.2\end{array}\right]$

Note: Connectivity with global DOFs are shown.

SME 3033 FINITE ELEMENT METHOD

Write the global system of linear equations, $[K]\{Q\}=\{F\}$, and then apply the boundary conditions: $Q_{2}, Q_{5}, Q_{6}, Q_{7}$, and $Q_{8}=0$.

The reduced system of linear equations are,

$$
10^{7} \cdot\left[\begin{array}{ccc}
0.983 & -0.45 & 0.2 \\
-0.45 & 0.983 & 0 \\
0.2 & 0 & 1.4
\end{array}\right]\left\{\begin{array}{l}
Q_{1} \\
Q_{3} \\
Q_{4}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
0 \\
-1000
\end{array}\right\}
$$

Solving the reduced SLEs simultaneously yields,

$$
\left\{\begin{array}{l}
Q_{1} \\
Q_{3} \\
Q_{4}
\end{array}\right\}=\left\{\begin{array}{c}
1.913 \\
0.875 \\
-7.436
\end{array}\right\} \cdot 10^{-5} \quad \text { in. }
$$

SME 3033 FINITE ELEMENT METHOD

Stresses in element 1

For element 1 , the element nodal displacement vector is

$$
\{q\}^{(1)}=10^{-5}\left[\begin{array}{lllll}
1.913, & 0, & 0.875, & -7.436, & 0
\end{array} 0\right]^{T}
$$

The element stresses, $\{\sigma\}^{(1)}$ are calculated from $[D][B]^{(1)}\{q\}$ as

$$
\{\sigma\}^{(1)}=\left[\begin{array}{lll}
-93.3, & -1138.7, & -62.3
\end{array}\right]^{T} \mathrm{psi}
$$

Stresses in element 2

For element 2, the element nodal displacement vector is

$$
\{q\}^{(2)}=10^{-5}\left[\begin{array}{llllll}
0, & 0, & 0 & 0, & 0.875, & -7.436
\end{array}\right]^{T}
$$

The element stresses, $\{\sigma\}^{(2)}$ are calculated from $[D][B]^{(2)}\{q\}$ as

$$
\{\sigma\}^{(2)}=\left[\begin{array}{lll}
93.4, & 23.4, & -297.4
\end{array}\right]^{T} \mathrm{psi}
$$

